Конденсаторы их роль и функции. Конденсаторы.Електроемкость

9 класс 5klass.net

Слайд 2

Цель урока:

Сформировать понятие электроемкости; Ввести новую характеристику – электроемкость конденсатора, и ее единицу измерения. Рассмотреть виды конденсаторов и где они применяются

Слайд 3

Повторим… 1 вариант 1) Кем и когда была создана теория электромагнитного поля и в чем заключается ее суть. 2) Перечислите виды электромагнитных волн. Инфракрасное излучение, его свойства и влияние на организм человека. 2 вариант 1) Что называют электромагнитной волной?. Какими основными свойствами обладает электромагнитная волна? 2) Перечислите виды электромагнитных волн. Рентгенвоское излучение, его свойства и влияние на организм человека.

Слайд 4

Конденсатор представляет собой два проводника, разделенные слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Электроемкость конденсатора равна где q – заряд положительной обкладки, U – напряжение между обкладками. Электроемкость конденсатора зависит от его геометрической конструкции и электрической проницаемости заполняющего его диэлектрика и не зависит от заряда обкладок. Конденсатор

Слайд 5

Электроёмкостью двух проводников называют отношение заряда одного из проводников к разности потенциалов между этим проводником и соседним. Единица измерения ёмкости – фарад – [ Ф ] Это надо знать:

Слайд 6

Электроемкость плоского конденсатора равна где S– площадь каждой из обкладок, d– расстояние между ними, ε – диэлектрическая проницаемость вещества между обкладками. При этом предполагается, что геометрические размеры пластин велики по сравнению с расстоянием между ними. Запомните, что…

Слайд 7

Энергия конденсатора

W = qU/2 W=q2 /2C U

Слайд 8

Типы конденсаторов

Слайд 9

В настоящее время широко применяются бумажные конденсаторы для напряжений в несколько сот вольт и ёмкостью в несколько микрофарад. В таких конденсаторах обкладками служат две длинные ленты тонкой металлической фольги, а изолирующей прокладкой между ними – несколько более широкая бумажная лента, пропитанная парафином. Бумажной лентой покрывается одна из обкладок, затем ленты туго свёртываются в рулон и укладываются в специальный корпус. Такой конденсатор, имея размеры спичечного коробка, обладает ёмкостью 10мкФ (металлический шар такой ёмкости имел бы радиус 90км). Бумажный конденсатор

Слайд 10

Керамический конденсатор В радиотехнике применяют керамические конденсаторы. Диэлектриком в них служит специальная керамика. Обкладки керамических конденсаторов изготавливаются в виде слоя серебра, нанесённого на поверхность керамики и защищённого слоем лака. Керамические конденсаторы изготавливаются на ёмкости о единиц до сотен пикофарад и на напряжения от сотен до тысяч вольт.

Слайд 11

Конденсатор переменной емкости.

Запишите устройство конденсатора

Слайд 12

Запишите какова их электроемкость.

Слайд 13

ПРИМЕНЕНИЕ КОНДЕНСАТОРОВ

  • Слайд 14

    Какова электроемкость конденсатора, если заряд конденсатора 10 нКл, а разность потенциалов 20 кВ. А теперь задача…

    Слайд 15

    Конденсатору емкостью 10 мкФ сообщили заряд 4 мкКл. Какова энергия заряженного конденсатора. А теперь задача…

    МАОУ Гимназия №1

    Презентация по физике в 10 кл

    «Конденсаторы»

    Учитель физики

    I квалификационной категории

    Г.Белогорск Амурская область

    Клименко Елена Николаевна Учитель физики Презентация по теме «Линзы» 11 класс Муниципальное общеобразовательное учреждение средняя общеобразовательная школа с углубленным изучением отдельных предметов №1 Г.Белогорск Амурская область


    КОНДЕНСАТОР – два проводника (обкладки), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.

    С- электроемкость (способность двух проводников накапливать электрический заряд).

    С= q/U q- заряд, U- напряжение

    В СИ электроемкость измеряется в Ф (фарад), 1Ф = 1 Кл/В


    Электроемкость конденсатора зависит от:

    • расстояния между пластинами –d(м),
    • площади пластин –S(м),
    • от рода диэлектрика – ε(диэлектрическая проницаемость среды).

    C =εέS/d

    έ – электрическая постоянная



    По виду диэлектрика конденсаторы различают на:

    • Вакуумные
    • Газообразные
    • Жидкие
    • Стеклянные
    • Слюдяные
    • Керамические
    • Бумажные
    • Электролитические
    • Оксидно-полупроводниковые

    Способы соединения конденсаторов:

    • последовательное

    2) параллельное


    Конденсаторы различают по возможности изменения своей емкости :

    • постоянные конденсаторы - емкость не изменяется
    • переменные конденсаторы - емкость изменяется в процессе функционирования аппаратуры
    • Подстроечные конденсаторы – емкость изменяется при разовой или периодической регулировке и не изменяется в процессе работы аппаратуры

    Энергия заряженного конденсатора определяется по формуле:

    Си: [W] = Дж


    Название

    Емкость

    Плоский конденсатор

    Схема

    Цилиндрический конденсатор

    Сферический конденсатор

    Применение конденсаторов :

    • Конденсаторы (совместно с катушками индуктивности и/или резисторами ) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров , цепей обратной связи , колебательных контуров и т. п.
    • При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках , электромагнитных ускорителях , импульсных лазерах с оптической накачкой , генераторах Маркса, (ГИН; ГИТ) , генераторах Кокрофта-Уолтона и т. п.
    • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
    • Измерителя уровня жидкости. Непроводящая жидкость, заполняет пространство между обкладками конденсатора, и ёмкость конденсатора меняется в зависимости от уровня
    • Измерительный преобразователь(ИП)влажности воздуха, древесины (изменение состава диэлектрика приводит к изменению ёмкости).
    • Конденсаторы способны накапливать большой заряд и создавать большую напряжённость на обкладках, которая используется для ускорения заряженных частиц или для создания кратковременных мощных электрических разрядов

    Источники литературы:

    1.Справочник по физике. Х.Кухлинг.,Москва «Мир», 1983.

    2.Учебник по физике 10 кл.Г.Я.Мякишев. ,Б.Б.Буховцев., Н.Н.Сотский.2004.









    Конденсаторы общего назначения – конденсаторы, применяемые в большинстве видов радиоэлектронной аппаратуры. К конденсаторам этого вида не применяются особые требования. Конденсаторы специального назначения – это все остальные конденсаторы. К ним относятся: импульсные, высоковольтные, пусковые, помехоподавляющие, а так же и другие конденсаторы.


    Конденсаторы постоянной емкости – это конденсаторы, чья емкость является фиксированной и в процессе эксплуатации аппаратуры не меняется. Конденсаторы переменной емкости – применяются в цепях, где требуется изменение емкости в процессе эксплуатации. При этом изменение емкости может производится различными способами: механически, путем изменения управляющего напряжения, изменением температуры окружающей среды.


    Незащищенные конденсаторы – вид конденсаторов, который не допускают к работе в условиях повышенной влажности. Возможно эксплуатация этих конденсаторов в составе герметизированной аппаратуры. Защищенные конденсаторы – могут работать в условия повышенной влажности.


    Неизолированные конденсаторы – при использовании этого вида конденсаторов не допускается касания их корпусом шасси аппаратуры. Изолированные конденсаторы – имеют хорошо изолированный корпус, что делает возможным касания шасси аппаратуры или ее токоведущих поверхностей. Уплотненные конденсаторы – в конденсаторах этого вида используется корпус, уплотненный органическими материалами. Герметизированные конденсаторы – эти конденсаторы имеют герметизированный корпус, что исключает взаимодействие внутренней конструкции конденсатора с окружающей средой.




    В современной технике конденсаторы находят себе исключительно широкое и разностороннее применение, прежде всего в областях электроники. В радиотехнической и телевизионной аппаратуре В радиолокационной технике В телефонии и телеграфии В автоматике и телемеханике В технике счетно- решающих устройств В электроизмерительной технике В лазерной технике
















    В современной электроэнергетике конденсаторы находят себе также весьма разнообразное и ответственное применение: 1.Для улучшения коэффициента мощности и промышленных установок (косинусные или шунтовые конденсаторы); 2.Для продольной емкости компенсации дальних линий передач и для регулирования напряжения в распределительных сетях (серийные конденсаторы); 3.Для емкостного отбора энергии от линий передач высокого напряжения и для подключения к линиям передач специальной аппаратуры связи и защитной аппаратуры (конденсаторы связи); 4.Для защиты от перенапряжений.






    2. В добывающей промышленности (угольной, металлорудной и т.п.) – в рудничном транспорте на конденсаторных электровозах нормальной и повышенной частоты (бесконтактных), в электровзрывных устройствах с использованием электрогидравлического эффекта и т.д.